narrow than the older ones and, therefore, of broader applicability. In fact it is concerned with the analysis of a kind of structure which lies beneath the crystal structure. The electronic structure is at present less exactly known than the set of atomic radii; however it is a natural and necessary extension of that set and it may be analysed by legitimate methods similar to those which have led to the less hidden atomic radii.

References

Bradley, A. J. \& Taylor, A. (1937). Proc. Roy.Soc. A 159, 56-72.
Chattopadhyay, T. \& Schubert, K. (1975). J. LessCommon Met. 41, 19-32.
Chattopadhyay, T. \& Schubert, K. (1976). J. LessCommon Met. To be published.
El-Boragy, M. \& Schubert, K. (1972). Z. Metallkd. 63, 52-53.

Engström, I. (1965). Acta Chem. Scand. 19, 1924 1932.

Frank, K. (1971). J. Less-Common Met. 23, 83-87.
Heinrich, S. \& Schubert, K. (1975). Z. Metallkd. 66, 353355.

Hump-Rothery, W. (1926). J. Inst. Met. 35, 295-348.
Khalaff, K. \& Schubert, K. (1974). J. Less-Common Met. 37, 129-140.
Löhberg, K. (1949). Z. Metallkd. 40, 68-72.
Mott, N. F. \& Jones, H. (1936). The Theory of the Properties of Metals and Alloys. Oxford Univ. Press.
Parthé, E. (1964). Crystal Chemistry of Tetrahedral Structures. New York: Gordon Breach.
Sato, H. (1965). Metallurg. Soc. Conf. 29, 295-419.
Schubert, K. (1953). Z. Naturforsch. 8a, 30-38.
Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen. Berlin: Springer-Verlag.
Schubert, K. (1973). Trans. Jap. Inst. Met. 14, 273-280, 281-284.
Schubert, K. (1974). Acta Cryst. B30, 193-204.

The Monoclinic Crystal Structure of $\mathbf{R}_{5} \mathbf{C o}_{2}(\mathbf{R}=\mathbf{P r}, \mathbf{N d}, \mathrm{Sm})$ with the $\mathrm{Mn}_{5} \mathbf{C}_{2}$ Structure Type

By Jean-Michel Moreau* and DominiQue Paccard*
Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland

(Received 1 October 1975; accepted 4 October 1975)
$\mathrm{Sm}_{5} \mathrm{Co}_{2}$ crystallizes in the monoclinic $\mathrm{Mn}_{5} \mathrm{C}_{2}$ structure type, space group $C 2 / c, a=16 \cdot 282$ (8), $b=$ 6.392 (5), $c=7.061$ (5) $\AA, \beta=96.6(1)^{\circ}, Z=4$. Patterson method, counter technique, absorption correction, least-squares refinement. $R=0.07$ for 664 independent reflexions. $\mathrm{Pr}_{5} \mathrm{Co}_{2}$ and $\mathrm{Nd}_{5} \mathrm{CO}_{2}$ are isostructural with $\mathrm{Sm}_{5} \mathrm{Co}_{2}$. This series is related to $\mathrm{Sm}_{3} \mathrm{Co}$ with the $\mathrm{Fe}_{3} \mathrm{C}$ structure type. All rare-earth atoms are at the corners of regular trigonal prisms centred by Co atoms. The trigonal prisms are arranged in zigzag chains as in FeB and $\mathrm{Fe}_{3} \mathrm{C}$, but in $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ the chains are joined by the edges of the prisms to form pairs.

Introduction

The binary phase diagrams of $\mathrm{Pr}-\mathrm{Co}$ and $\mathrm{Nd}-\mathrm{Co}$ have been reported by Ray (1974). He showed the existence of phases at about 29% Co and labelled them $\operatorname{Pr}_{\sim 7}$ $\mathrm{Co}_{\sim 3}$ and $\mathrm{Nd}_{\sim 7} \mathrm{Co}_{\sim 3}$. These phases are not isotypic with the hexagonal $\mathrm{Th}_{7} \mathrm{Fe}_{3}$ type which occurs with Ni alloys such as $\mathrm{Pr}_{7} \mathrm{Ni}_{3}$ and $\mathrm{Nd}_{7} \mathrm{Ni}_{3}$ (Kissel, Tsuchida \& Wallace, 1966). Reported in the binary phase diagram of Sm-Co, Buschow \& Van der Goot (1968), is the existence of a phase at $31 \% \mathrm{Co}$, which has been labelled $\mathrm{Sm}_{9} \mathrm{Co}_{4}$. A powder pattern was indexed in terms of an orthorhombic cell, but the structure was

[^0]not identified. The present investigation was undertaken on a single crystal to determine the stoichiometry of these phases and to verify if some predictions about the atomic model could be postulated from the prism linkage coefficient calculation (Moreau, Paccard \& Parthé, 1976).

Experimental

The alloys were made from commercially available elements of high purity: rare earth and Co 99.9%. The constituents were melted under an argon atmosphere. X-ray diffraction patterns of the powders in the as-cast conditions were taken on a Guinier-de Wolff focusing camera with $\mathrm{Cu} K \alpha$ radiation. Single crystals of $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ were isolated by mechanical fragmentation from the crushed melt.

Lattice constants and intensities of $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ were measured with graphite-monochromated Mo $K \alpha$ radiation on a Philips PW 1100 computer-controlled fourcircle goniometer in the $\theta-2 \theta$ scan mode. Lattice parameters (Table 1) were refined by least squares to fit 2θ values for 20 reflexions. The intensities of 664 non-equivalent reflexions ($\left|F_{o}\right|<2 \sigma_{F}$) were recorded out to a limit of $(\sin \theta) / \lambda=0.5 \AA^{-1}$ and all were used in the structure determination. The crystal had a very irregular shape and thus absorption corrections were made with the experimental method of Flack (1974, 1975). Intensities of the four symmetry-equivalent reflexions were automatically collected at intervals of 20° in ψ for the range 0 to 180° for each reflexion. In this way measurements were made for a set of eight independent reflexions in the θ range $7-20^{\circ}$. Examination of systematic absences showed the space group to
be $C 2 / c$ or $C c$. The ambiguity was resolved from a Patterson map which showed the true space group to be $C 2 / c$.

Structure determination

A comparison of the lattice parameters of $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ with those of $\mathrm{Sm}_{3} \mathrm{Co}$ (Buschow \& Van der Goot, 1968)

Table 1. Crystal data of $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ and of $\mathrm{Sm}_{3} \mathrm{Co}$ (Buschow \& Van der Goot, 1969)

	$\mathrm{Sm}_{5} \mathrm{Co}_{2}$	$\mathrm{Sm}_{3} \mathrm{Co}$
Space group	$C 2 / c(\mathrm{No} .15)$	Pnma (No. 62)
a	$16.282(8) \AA$	$7.055 \AA$
b	$6.392(5)$	9.605
c	$7.061(5)$	6.342
β	$96.6(1)^{\circ}$	
Z	4	2

Table 2. Atomic parameters for $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ with e.s.d.'s in parentheses
The isotropic temperature factor is defined as $\exp \left[-8 \pi^{2} U(\sin \theta / \lambda)^{2}\right]$. Space group $C 2 / c$.

	Equipoint	x	y	z	$U\left(\AA^{2}\right) \times 10^{2}$
$\operatorname{Sm}(1)$	$8 f$	$0.0940(1)$	$0.1116(3)$	$0.4156(2)$	$1.61(4)$
$\operatorname{Sm}(2)$	$8 f$	$0.2162(1)$	$0.5701(3)$	$0.3156(2)$	$1.56(4)$
$\operatorname{Sm}(3)$	$4 e$	0.00	$0.5750(4)$	0.25	$1.58(8)$
Co	$8 f$	$0.1107(3)$	$0.2901(7)$	$0.0738(6)$	$1.9(1)$

(a)

(b)

Fig. 1. The linkage of the trigonal prisms in $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ shown in projection down \mathbf{b}. Large circles represent Sm atoms, small circles at the centres of the prisms, Co atoms. The numbers inscribed correspond to the numbers of the atoms given in Table 2. (a) Arrangement of prisms centred by Co atoms with $y_{\mathrm{C}_{0}} \approx \frac{3}{4}$. White Sm atoms with $y \approx \frac{1}{2}$ and black Sm atoms with $y \approx 1 \cdot 0$.
(b) Arrangement of prisms centred by Co atoms with $y_{\mathrm{c}_{\mathrm{o}}} \approx \frac{1}{4}$. White Sm atoms with $y \approx \frac{1}{2}$ and black Sm atoms with $y \approx 0 \cdot 0$.
showed that b and c of the monoclinic $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ cell are almost identical to c and a respectively of the orthorhombic $\mathrm{Sm}_{3} \mathrm{Co}$ cell (Table 1). This was an indication that the structure could possibly be built of Cocentred trigonal prisms of Sm with a stacking along the monoclinic b and c identical to that of $\mathrm{Sm}_{3} \mathrm{Co}$ along the c and a directions. Moreover, calculations based on the atomic volumes of Sm and Co indicated that the unit cell should contain four $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ formula units. Thus the prism linkage coefficient calculated from the formula $\mathrm{R}_{6} \mathrm{~T}_{\mathrm{LC}}$ (Moreau, Paccard \& Parthé, 1976) was $\mathrm{LC}=12 / 5$. Considering the multiplicity of each equipoint in the space group $C 2 / c$ in conjunction with the Patterson map, the 20 Sm atoms contained in the unit cell had to be located on two sites in general positions $8 f[\operatorname{Sm}(1)$ and $\operatorname{Sm}(2)]$ and one special position site with a multiplicity of $4[\mathrm{Sm}(3)]$. The eight Co atoms are in general positions. Assuming that all Sm atoms participate in the trigonal prism around one Co atom, and letting integers m, n and p be the number of $\operatorname{Sm}(1)$, $\operatorname{Sm}(2)$ and $\operatorname{Sm}(3)$ atoms respectively at the prism corners, then $m+n+p=6$. Thus $\mathrm{LC}=(8 \times m+8 \times n$ $+4 \times 2 p) / 20=12 / 5$ for this condition. There are many possible values of m, n and p which satisfy $\mathrm{LC}=12 / 5$ so that the model could not be predicted directly from the prism linkage calculation. However, assuming that the structure is based on zigzag chains of trigonal prisms as in $\mathrm{Fe}_{3} \mathrm{C}$, one could see that, if two of these chains were joined by prism edges (Fig. 1), the values of $m=2, n=2$ and $p=2$ would satisfy the condition $m+n+p=6$ and $\mathrm{LC}=12 / 5$. This model was confirmed by examination of Patterson sections. Allowing variation of positional and isotropic thermal parameters the structure refined satisfactorily with the least-squares program CRYLSQ (X-RAY system, 1972). Relativistic Hartree-Fock scattering factors were used for Sm and Co (Cromer \& Mann, 1968). The value of $R\left(=\sum|\Delta F| / \sum\left|F_{o}\right|\right)$ was 0.07 for all 664 reflexions. A difference map did not show any significant electron density.* The final positional and thermal parameters are listed in Table 2. A listing of the low-angle reflexions with corresponding calculated intensities for X-ray powder diagram identification is given in Table 3 (Yvon, Jeitschko \& Parthé, 1969). Interatomic distances are listed in Table 4.

Isotypic compounds

The lattice parameters of $\mathrm{Pr}_{5} \mathrm{Co}_{2}$ and $\mathrm{Nd}_{5} \mathrm{Co}_{2}$ are shown in Table 5. These parameters were obtained by leastsquares refinement of reflexions measured from films taken on a Guinier-de Wolff camera with $\mathrm{Cu} \mathrm{K} \alpha$ radiation. The variation of the unit-cell parameters

[^1]with the atomic number of the rare-earth element is a consequence of the normal lanthanide contraction. Furthermore the compounds $E u_{5} \mathrm{Pd}_{2}$ and $\mathrm{Yb}_{5} \mathrm{Pd}_{2}$ also crystallize with the $\mathrm{Mn}_{5} \mathrm{C}_{2}$ type structure (Iandelli $\mathcal{\&}$ Palenzona, 1974).

Discussion

Once the structure was solved and the stoichiometry $\mathrm{R}_{5} \mathrm{Co}_{2}$ established, it appeared that these alloys were isostructural with $\mathrm{Mn}_{5} \mathrm{C}_{2}$ (Kuo \& Persson, 1954) or $\mathrm{Fe}_{5} \mathrm{C}_{2}$ (Jack \& Wild, 1966), known as χ-carbide or Hägg carbide. This is not surprising as other rare-earth - transition-metal alloys crystallize with carbide structures. The binary compounds $\mathrm{R}_{3} \mathrm{Co}$ (Buschow \& Van der Goot, 1969) and $\mathrm{R}_{3} \mathrm{Ni}$ (Lemaire \& Paccard, 1967), where $\mathrm{R}=$ the rare-earth elements from La to Lu except Ce (no data for Eu), crystallize with the orthorhombic structure of cementite $\mathrm{Fe}_{3} \mathrm{C}$ (Lipson \& Petch, 1940). The structural relationship between $\mathrm{Fe}_{5} \mathrm{C}_{2}$ and $\mathrm{Fe}_{3} \mathrm{C}$ has been described by Senateur \& Fruchart (1963) and recently by Andersson \& Hyde (1974) in

Table 3. Calculated powder data for $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ for $\mathrm{Cr} \mathrm{K} \alpha$ radiation ($\lambda=2 \cdot 29092 \AA$)
Intensity calculated with point positions obtained from singlecrystal data. $I=m F^{2}\left(1+\cos ^{2} 2 \theta\right) /\left(\sin ^{2} \theta \cdot \cos \theta\right)$ is normalized to the strongest reflexion having intensity 1000 .

h	k	l	$10^{3} \times \sin ^{2} \theta$	Intensity
2	0	0	$20 \cdot 06$	$3 \cdot 7$
1	1	0	$37 \cdot 13$	$1 \cdot 3$
1	1	-1	$61 \cdot 14$	$0 \cdot 1$
1	1	1	$66 \cdot 46$	$33 \cdot 4$
3	1	0	$77 \cdot 26$	$0 \cdot 0$
4	0	0	$80 \cdot 25$	$1 \cdot 1$
3	1	-1	$95 \cdot 94$	$26 \cdot 5$
0	0	2	$106 \cdot 68$	$46 \cdot 9$
3	1	1	$111 \cdot 91$	$121 \cdot 4$
2	0	-2	$116 \cdot 09$	40.6
0	2	0	$128 \cdot 45$	$101 \cdot 3$
2	0	2	$137 \cdot 39$	$218 \cdot 7$
1	1	-2	$138 \cdot 48$	$380 \cdot 3$
2	2	0	$148 \cdot 52$	$25 \cdot 1$
1	1	2	$149 \cdot 13$	$113 \cdot 7$
0	2	1	$155 \cdot 12$	$662 \cdot 7$
5	1	0	$157 \cdot 51$	$1000 \cdot 0$
4	0	-2	$165 \cdot 63$	$282 \cdot 3$
3	1	-2	$167 \cdot 96$	$381 \cdot 1$
2	2	-1	$169 \cdot 86$	$262 \cdot 1$
5	1	-1	$170 \cdot 86$	$209 \cdot 6$
2	2	1	180.51	$305 \cdot 0$
6	0	0	$180 \cdot 57$	$97 \cdot 4$
5	1	1	$197 \cdot 49$	$284 \cdot 9$
3	1	2	$199 \cdot 91$	$329 \cdot 2$
4	0	2	$208 \cdot 23$	229.8
4	2	0	$208 \cdot 71$	$158 \cdot 6$
4	2	-1	$224 \cdot 72$	$173 \cdot 2$
0	2	2	$235 \cdot 13$	$112 \cdot 7$
5	1	-2	$237 \cdot 56$	$121 \cdot 9$
2	2	-2	$24 \cdot 55$	$3 \cdot \cdot 0$
4	2	1	$246 \cdot 03$	$4 \cdot 2$
6	0	-2	$255 \cdot 29$	$154 \cdot 7$
2	2	2	$265 \cdot 85$	$61 \cdot 9$
1	1	-3	$269 \cdot 17$	$254 \cdot 5$
7	1	0	$277 \cdot 89$	$0 \cdot 1$
1	1	3	$285 \cdot 15$	$63 \cdot 0$
7	1	-1	$285 \cdot 92$	$1 \cdot 1$

Table 4. Interatomic distances of Co atoms in $\mathrm{Sm}_{5} \mathrm{Co}_{2}$ up to $4 \AA$

All e.s.d.'s are less than $0.01 \AA$. The Sm atoms forming th surrounding trigonal prism are marked with an asterisk.			
$\mathrm{Sm}(1)-\mathrm{Co}$	2.71 §	$\mathrm{Sm}(2)-\mathrm{Co}$	2.79 A
Co	$2 \cdot 80$	Co	$2 \cdot 90$
Sm(3)	$3 \cdot 47$	Co	$3 \cdot 16$
Co	3.53	Sm(3)	$3 \cdot 50$
Sm(3)	3.57	$2 \mathrm{Sm}(2)$	$3 \cdot 54$
Sm(2)	$3 \cdot 63$	Sm(2)	$3 \cdot 55$
Sm(1)	3.63	Sm(1)	$3 \cdot 63$
Sm(2)	$3 \cdot 65$	$2 \mathrm{Sm}(2)$	$3 \cdot 64$
Sm(2)	3.67	Sm(1)	3.66
Sm(1)	$3 \cdot 70$	Sm(1)	$3 \cdot 67$
$2 \mathrm{Sm}(1)$	3.87	Sm(1)	$3 \cdot 84$
Sm(2)	$3 \cdot 84$		
Sm(3)	$3 \cdot 88$		
Co	$3 \cdot 98$		
$\mathrm{Sm}(3)-2 \mathrm{Co}$	2.83 A	Co- ${ }^{*} \mathrm{Sm}(1)$	2.71 §
2 Co	2.94	*Sm(2)	2.79
2Sm(1)	$3 \cdot 47$	*Sm(1)	$2 \cdot 80$
2 Sm (2)	$3 \cdot 50$	*Sm(3)	$2 \cdot 88$
2 Sm (1)	$3 \cdot 57$	*Sm(2)	$2 \cdot 90$
$2 \mathrm{Sm}(3)$	$3 \cdot 66$	*Sm(3)	2.94
$2 \mathrm{Sm}(1)$	$3 \cdot 88$	Sm(2)	$3 \cdot 16$
		Sm(1)	$3 \cdot 53$
		Sm(1)	$3 \cdot 98$

Table 5. Lattice constants for $\mathrm{R}_{5} \mathrm{Co}_{2}$ compounds with space group $\mathrm{C} 2 / \mathrm{c}$

	$V=$ Volume of the unit cell. $n=$ Number of atoms in the unit cell.				
	a	b	c	β	$(V / n)^{1 / 3}$
$\mathrm{Sm}_{5} \mathrm{Co}_{2}$	$16.282 \AA$	$6.392 \AA$	7.061 A	$96.61{ }^{\circ}$	$2.96 \AA$
$\mathrm{Nd}_{5} \mathrm{Co}_{2}$	16.37	6.43	7.08	96.7	2.98
$\mathrm{Pr}_{5} \mathrm{Co}_{2}$	$16 \cdot 54$	$6 \cdot 48$	7-10	$96 \cdot 8$	3.00

terms of unit-cell twinning. Moreover at 30 at. \% Ni content the $\mathrm{R}_{7} \mathrm{Ni}_{3}$ alloys with $\mathrm{R}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$ (Kissel, Tsuchida \& Wallace, 1966) crystallize with the hexagonal $\mathrm{Th}_{7} \mathrm{Fe}_{3}$ type (Roof, Larson \& Cromer, 1961) which is also isostructural with the carbide $\mathrm{Mn}_{7} \mathrm{C}_{3}$ (Fruchart, 1963). As in $\mathrm{R}_{3} \mathrm{Co}$ and $\mathrm{R}_{5} \mathrm{Co}_{2}$, the centred trigonal prism is also the fundamental element of the $\mathrm{Th}_{7} \mathrm{Fe}_{3}$ structure. A review of all the $\mathrm{R}_{7} \mathrm{~T}_{3}$ phases with $\mathrm{T}=\mathrm{Ni}, \mathrm{Rh}, \mathrm{Pd}, \mathrm{Ir}, \mathrm{Pt}$ has been made by Olcese (1973) but unfortunately the principles of formation for these structures are not really understood. In particular the $\mathrm{R}_{7} \mathrm{Co}_{3}$ phase does not exist but instead the $\mathrm{R}_{5} \mathrm{Co}_{2}$ phase occurs with 29 at. $\% \mathrm{Co}$ content. In addition it should be noted that La forms
only $\mathrm{La}_{3} \mathrm{Co}$ and not $\mathrm{La}_{7} \mathrm{Co}_{3}$ or $\mathrm{La}_{5} \mathrm{Co}_{2}$ compounds (Ray, 1974) and Ce only $\mathrm{Ce}_{24} \mathrm{Co}_{11}$ (Larson \& Cromer, 1962). Finally the common characteristics of all the structures $\mathrm{R}_{3} \mathrm{~T}, \mathrm{R}_{5} \mathrm{~T}_{2}$ and $\mathrm{R}_{7} \mathrm{~T}_{3}$ can be summarized as follows:
(1) All R atoms participate in the formation of regular trigonal prisms.
(2) All T atoms are at the centres of regular trigonal prisms.

References

Andersson, S. \& Hyde, B. G. (1974). J. Solid State Chem. 9, 92-101.
Buschow, K. H. J. \& Van der Goot, A. S. (1968). J. LessCommon Met. 14, 323-328.
Buschow, K. H. J. \& Van der Goot, A. S. (1969). J. LessCommon Met. 18, 309-311.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Flack, H. D. (1974). Acta Cryst. A 30, 569-573.
Flack, H. D. (1975). J. Appl. Cryst. 8, 520-521.
Fruchart, R. (1963). Bull. Soc. Chim. Fr. 439, 2652-2658.
Iandelli, A. \& Palenzona, A. (1974). J. Less-Common Met. 38, 1-7.
Jack, K. H. \& Wild, S. (1966). Nature, Lond. 212, 248-250.
Kissel, F., Tsuchida, T. \& Wallace, W. E. (1966). J. Chem. Phys. 44, 4651-4652.
Kuo, K. \& Persson, L. E. (1954). J. Iron Steel Inst. 178, 39-44.
Larson, A. C. \& Cromer, D. T. (1962). Acta Cryst. 15, 1224-1227.
Lemaire, R. \& Paccard, D. (1967). Bull. Soc. Fr. Minér. Crist. 90, 311-315.
Lipson, H. \& Petch, N. J. (1940). J. Iron Steel Inst. 142, 95-104.
Moreau, J. M., Paccard, D. \& Parthé, E. (1976). Acta Cryst. B32, 496-500.
Olcese, G. L. (1973). J. Less-Common Met. 33, 71-81.
Ray, A. E. (1974). Cobalt, 1, 13-20.
Roof, R. B., Larson, A. C. \& Cromer, D. T. (1961). Acta Cryst. 14, 1084-1087.
Senateur, J. P. \& Fruchart, R. (1963). C. R. Acad. Sci. Paris, 256, 3114-3117.
X-RAY system (1972). Version of June. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Yvon, K., Jeitschio, W. \& Parthé, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns, 1969 Version, Laboratoire de Cristallographie aux Rayons X, Univ. de Genève, Geneva, Switzerland.

[^0]: * Present address: Centre Universitaire de Savoie, I.U.T. Annecy et Laboratoire de Magnétisme, CNRS, Grenoble, France.

[^1]: * A table of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31429 (19 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

