narrow than the older ones and, therefore, of broader applicability. In fact it is concerned with the analysis of a kind of structure which lies beneath the crystal structure. The electronic structure is at present less exactly known than the set of atomic radii; however it is a natural and necessary extension of that set and it may be analysed by legitimate methods similar to those which have led to the less hidden atomic radii.

References

- BRADLEY, A. J. & TAYLOR, A. (1937). Proc. Roy. Soc. A 159, 56-72.
- CHATTOPADHYAY, T. & SCHUBERT, K. (1975). J. Less-Common Met. 41, 19-32.
- CHATTOPADHYAY, T. & SCHUBERT, K. (1976). J. Less-Common Met. To be published.
- EL-BORAGY, M. & SCHUBERT, K. (1972). Z. Metallkd. 63, 52-53.

- ENGSTRÖM, I. (1965). Acta Chem. Scand. 19, 1924– 1932.
- FRANK, K. (1971). J. Less-Common Met. 23, 83-87.
- HEINRICH, S. & SCHUBERT, K. (1975). Z. Metallkd. 66, 353-355.
- HUME-ROTHERY, W. (1926). J. Inst. Met. 35, 295-348.
- KHALAFF, K. & SCHUBERT, K. (1974). J. Less-Common Met. 37, 129–140.
- Löhberg, K. (1949). Z. Metallkd. 40, 68-72.
- MOTT, N. F. & JONES, H. (1936). The Theory of the Properties of Metals and Allovs. Oxford Univ. Press.
- PARTHÉ, E. (1964). Crystal Chemistry of Tetrahedral Structures. New York: Gordon Breach.
- SATO, H. (1965). Metallurg. Soc. Conf. 29, 295-419.
- SCHUBERT, K. (1953). Z. Naturforsch. 8a, 30-38.
- SCHUBERT, K. (1964). Kristallstrukturen zweikomponentiger Phasen. Berlin: Springer-Verlag.
- SCHUBERT, K. (1973). Trans. Jap. Inst. Met. 14, 273-280, 281-284.
- SCHUBERT, K. (1974). Acta Cryst. B30, 193-204.

Acta Cryst. (1976). B32, 1654

The Monoclinic Crystal Structure of R_5Co_2 (R=Pr, Nd, Sm) with the Mn_5C_2 Structure Type

BY JEAN-MICHEL MOREAU* AND DOMINIQUE PACCARD*

Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland

(Received 1 October 1975; accepted 4 October 1975)

Sm₅Co₂ crystallizes in the monoclinic Mn₅C₂ structure type, space group C2/c, a=16.282 (8), b=6.392 (5), c=7.061 (5) Å, $\beta=96.6$ (1)°, Z=4. Patterson method, counter technique, absorption correction, least-squares refinement. R=0.07 for 664 independent reflexions. Pr₅Co₂ and Nd₅Co₂ are isostructural with Sm₅Co₂. This series is related to Sm₃Co with the Fe₃C structure type. All rare-earth atoms are at the corners of regular trigonal prisms centred by Co atoms. The trigonal prisms are arranged in zigzag chains as in FeB and Fe₃C, but in Sm₅Co₂ the chains are joined by the edges of the prisms to form pairs.

Introduction

The binary phase diagrams of Pr–Co and Nd–Co have been reported by Ray (1974). He showed the existence of phases at about 29% Co and labelled them $Pr_{\sim 7}$ $Co_{\sim 3}$ and $Nd_{\sim 7}$ $Co_{\sim 3}$. These phases are not isotypic with the hexagonal Th₇Fe₃ type which occurs with Ni alloys such as Pr_7Ni_3 and Nd_7Ni_3 (Kissel, Tsuchida & Wallace, 1966). Reported in the binary phase diagram of Sm–Co, Buschow & Van der Goot (1968), is the existence of a phase at 31% Co, which has been labelled Sm₉Co₄. A powder pattern was indexed in terms of an orthorhombic cell, but the structure was not identified. The present investigation was undertaken on a single crystal to determine the stoichiometry of these phases and to verify if some predictions about the atomic model could be postulated from the prism linkage coefficient calculation (Moreau, Paccard & Parthé, 1976).

Experimental

The alloys were made from commercially available elements of high purity: rare earth and Co 99.9%. The constituents were melted under an argon atmosphere. X-ray diffraction patterns of the powders in the as-cast conditions were taken on a Guinier-de Wolff focusing camera with Cu $K\alpha$ radiation. Single crystals of Sm₅Co₂ were isolated by mechanical fragmentation from the crushed melt.

1654

^{*} Present address: Centre Universitaire de Savoie, I.U.T. Annecy et Laboratoire de Magnétisme, CNRS, Grenoble, France.

Lattice constants and intensities of Sm₅Co₂ were measured with graphite-monochromated Mo $K\alpha$ radiation on a Philips PW 1100 computer-controlled fourcircle goniometer in the θ -2 θ scan mode. Lattice parameters (Table 1) were refined by least squares to fit 2θ values for 20 reflexions. The intensities of 664 non-equivalent reflexions $(|F_{o}| < 2\sigma_{F})$ were recorded out to a limit of $(\sin \theta)/\lambda = 0.5$ Å⁻¹ and all were used in the structure determination. The crystal had a very irregular shape and thus absorption corrections were made with the experimental method of Flack (1974, 1975). Intensities of the four symmetry-equivalent reflexions were automatically collected at intervals of 20° in ψ for the range 0 to 180° for each reflexion. In this way measurements were made for a set of eight independent reflexions in the θ range 7–20°. Examination of systematic absences showed the space group to

be C2/c or Cc. The ambiguity was resolved from a Patterson map which showed the true space group to be C2/c.

Structure determination

A comparison of the lattice parameters of Sm_5Co_2 with those of Sm_3Co (Buschow & Van der Goot, 1968)

Table 1. Crystal data of Sm₅Co₂ and of Sm₃Co (Buschow & Van der Goot, 1969)

Space group	Sm₅Co₂ C2/c (No. 15)	Sm ₃ Co <i>Pnma</i> (No. 62)
a	16·282 (8) Å	7∙055 Å
Ь	6.392 (5)	9.605
с	7.061 (5)	6.342
β	96·6 (1)°	
Z	4	2

Table 2. Atomic parameters for Sm₅Co₂ with e.s.d.'s in parentheses

The isotropic temperature factor is defined as exp $[-8\pi^2 U(\sin \theta/\lambda)^2]$. Space group C2/c.

	Sm(1) Sm(2) Sm(3) Co	Equipoint 8f 8f 4e 8f	x 0·0940 (1) 0·2162 (1) 0·00 0·1107 (3)	y 0·1116 (3) 0·5701 (3) 0·5750 (4) 0·2901 (7)	z 0·4156 (2) 0·3156 (2) 0·25 0·0738 (6)	$U(Å^2) \times 10^2 \\ 1.61 (4) \\ 1.56 (4) \\ 1.58 (8) \\ 1.9 (1)$	
				0			
$\operatorname{Sm}_{5}\operatorname{Co}_{2}$ $y_{c_{0}} \approx^{3}/_{4}$							Sm_5Co_2 $y_{Co} \approx \frac{1}{4}$
			00		Jopa		
		(<i>a</i>)				<i>(b)</i>	

Fig. 1. The linkage of the trigonal prisms in Sm₅Co₂ shown in projection down b. Large circles represent Sm atoms, small circles at the centres of the prisms, Co atoms. The numbers inscribed correspond to the numbers of the atoms given in Table 2. (a) Arrangement of prisms centred by Co atoms with $y_{Co} \approx \frac{3}{4}$. White Sm atoms with $y \approx \frac{1}{2}$ and black Sm atoms with $y \approx 1 \cdot 0$. (b) Arrangement of prisms centred by Co atoms with $y_{Co} \approx \frac{3}{4}$. White Sm atoms with $y \approx \frac{1}{2}$ and black Sm atoms with $y \approx 0.0$.

showed that b and c of the monoclinic Sm_5Co_2 cell are almost identical to c and a respectively of the orthorhombic Sm₃Co cell (Table 1). This was an indication that the structure could possibly be built of Cocentred trigonal prisms of Sm with a stacking along the monoclinic b and c identical to that of Sm_3Co along the c and a directions. Moreover, calculations based on the atomic volumes of Sm and Co indicated that the unit cell should contain four Sm₅Co₂ formula units. Thus the prism linkage coefficient calculated from the formula R₆T_{LC} (Moreau, Paccard & Parthé, 1976) was LC = 12/5. Considering the multiplicity of each equipoint in the space group C2/c in conjunction with the Patterson map, the 20 Sm atoms contained in the unit cell had to be located on two sites in general positions 8f [Sm(1) and Sm(2)] and one special position site with a multiplicity of 4 [Sm(3)]. The eight Co atoms are in general positions. Assuming that all Sm atoms participate in the trigonal prism around one Co atom, and letting integers m, n and p be the number of Sm(1), Sm(2) and Sm(3) atoms respectively at the prism corners, then m+n+p=6. Thus $LC = (8 \times m + 8 \times n)$ $(+4 \times 2p)/20 = 12/5$ for this condition. There are many possible values of m, n and p which satisfy LC = 12/5so that the model could not be predicted directly from the prism linkage calculation. However, assuming that the structure is based on zigzag chains of trigonal prisms as in Fe₃C, one could see that, if two of these chains were joined by prism edges (Fig. 1), the values of m=2, n=2 and p=2 would satisfy the condition m+n+p=6 and LC=12/5. This model was confirmed by examination of Patterson sections. Allowing variation of positional and isotropic thermal parameters the structure refined satisfactorily with the least-squares program CRYLSQ (X-RAY system, 1972). Relativistic Hartree-Fock scattering factors were used for Sm and Co (Cromer & Mann, 1968). The value of $R(=\sum |\Delta F|/\sum |F_{e}|)$ was 0.07 for all 664 reflexions. A difference map did not show any significant electron density.* The final positional and thermal parameters are listed in Table 2. A listing of the low-angle reflexions with corresponding calculated intensities for X-ray powder diagram identification is given in Table 3 (Yvon, Jeitschko & Parthé, 1969). Interatomic distances are listed in Table 4.

Isotypic compounds

The lattice parameters of Pr_5Co_2 and Nd_5Co_2 are shown in Table 5. These parameters were obtained by leastsquares refinement of reflexions measured from films taken on a Guinier-de Wolff camera with Cu Ka radiation. The variation of the unit-cell parameters with the atomic number of the rare-earth element is a consequence of the normal lanthanide contraction. Furthermore the compounds Eu_5Pd_2 and Yb_5Pd_2 also crystallize with the Mn_5C_2 type structure (landelli & Palenzona, 1974).

Discussion

Once the structure was solved and the stoichiometry R_5Co_2 established, it appeared that these alloys were isostructural with Mn_5C_2 (Kuo & Persson, 1954) or Fe_5C_2 (Jack & Wild, 1966), known as χ -carbide or Hägg carbide. This is not surprising as other rare-earth - transition-metal alloys crystallize with carbide structures. The binary compounds R_3Co (Buschow & Van der Goot, 1969) and R_3Ni (Lemaire & Paccard, 1967), where R = the rare-earth elements from La to Lu except Ce (no data for Eu), crystallize with the orthorhombic structure of cementite Fe_3C (Lipson & Petch, 1940). The structural relationship between Fe_5C_2 and Fe_3C has been described by Senateur & Fruchart (1963) and recently by Andersson & Hyde (1974) in

Table 3. Calculated powder data for Sm_5Co_2 for Cr Ka radiation ($\lambda = 2.29092$ Å)

Intensity calculated with point positions obtained from singlecrystal data. $I = mF^2(1 + \cos^2 2\theta)/(\sin^2 \theta \cdot \cos \theta)$ is normalized to the strongest reflexion having intensity 1000.

h	k	1	$10^3 \times \sin^2 \theta$	Intensity
2	0	0	20.06	3.7
1	i	Ó	37.13	12.3
1	1	-1	61.14	0.1
1	1	ī	66.46	33.4
3	1	Ō	77.26	0.0
4	Ô	ŏ	80.25	1.1
3	Ĩ	-1	95.94	26.5
õ	Ô	2	106.68	46.9
3	ĩ	ī	111.91	121.4
2	ō	-2^{-2}	116.09	40.6
ō	2	ō	128.45	101.3
ž	ō	2	137.39	218.7
ī	Ĩ	$-\bar{2}$	138.48	380.3
2	2	ō	148.52	25.1
1	ī	2	149.13	113.7
ô	2	ī	155.12	662.7
5	1	Ô	157.51	1000.0
4	ō	$-\tilde{2}$	165.63	282.3
3	1	$-\bar{2}$	167.96	381.1
2	2	-1	169.86	262.1
5	1	-1	170.86	209.6
2	2	ī	180.51	305.0
6	ō	Ō	180.57	97.4
5	1	1	197.49	284.9
3	î	2	199.91	329.2
4	Ō	$\overline{2}$	208.23	229.8
4	2	ō	208.71	158.6
4	$\overline{2}$	- Ĩ	224.72	173.2
ò	$\overline{2}$	2	235.13	112.7
5	1	$-\bar{2}$	237.56	121.9
2	2	$-\bar{2}$	244.55	38.0
4	$\overline{2}$	1	246.03	4.2
6	ō	-2^{-2}	255.29	154.7
ž	2	$\overline{2}$	265.85	61.9
1	ī	-3	269.17	254.5
7	i	ŏ	277.89	0.1
i	î	3	285.15	63.0
7	î	-ĭ	285.92	1.1

^{*} A table of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31429 (19 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 4. Interatomic distances of Co atoms in Sm_5Co_2 up to 4 Å

All e.s.d.'s are less than 0.01 Å. The Sm atoms forming the surrounding trigonal prism are marked with an asterisk.

Sm(1)-Co Co Sm(3) Co Sm(2) Sm(2) Sm(1) Sm(2) Sm(2) Sm(1) 2Sm(1) 2Sm(1) Sm(2) Sm(3) Co	2.71 Å 2.80 3.47 3.53 3.57 3.63 3.63 3.65 3.65 3.67 3.70 3.87 3.84 3.88 3.98	Sm(2)-Co Co Sm(3) 2Sm(2) Sm(2) Sm(1) 2Sm(2) Sm(1) Sm(1) Sm(1)	2.79 Å 2.90 3.16 3.50 3.55 3.63 3.64 3.66 3.67 3.84
Sm(3)-2Co 2Co 2Sm(1) 2Sm(2) 2Sm(1) 2Sm(3) 2Sm(1)	2·83 Å 2·94 3·47 3·50 3·57 3·66 3·88	Co*Sm(1) *Sm(2) *Sm(1) *Sm(3) *Sm(2) *Sm(3) Sm(2) Sm(1) Sm(1)	2·71 Å 2·79 2·80 2·88 2·90 2·94 3·16 3·53 3·98

Table 5. Lattice constants for R_5Co_2 compounds with space group C2/c

V = Volume of the unit cell.

n = Number of atoms in the unit cell.

	а	b	с	β	$(V/n)^{1/3}$
Sm₅Co₂	16·282 Å	6·392 Å	7·061 Å	96∙61°	2·96 Å
Nd ₅ Co ₂	16.37	6.43	7.08	96.7	2.98
Pr ₅ Co ₂	16.54	6.48	7.10	96.8	3.00

terms of unit-cell twinning. Moreover at 30 at. % Ni content the R_7Ni_3 alloys with R = La, Ce, Pr, Nd(Kissel, Tsuchida & Wallace, 1966) crystallize with the hexagonal Th₇Fe₃ type (Roof, Larson & Cromer, 1961) which is also isostructural with the carbide Mn_7C_3 (Fruchart, 1963). As in R_3Co and R_5Co_2 , the centred trigonal prism is also the fundamental element of the Th₇Fe₃ structure. A review of all the R_7T_3 phases with T = Ni, Rh, Pd, Ir, Pt has been made by Olcese (1973) but unfortunately the principles of formation for these structures are not really understood. In particular the R_7Co_3 phase does not exist but instead the R_5Co_2 phase occurs with 29 at. % Co content. In addition it should be noted that La forms only La₃Co and not La₇Co₃ or La₅Co₂ compounds (Ray, 1974) and Ce only Ce₂₄Co₁₁ (Larson & Cromer, 1962). Finally the common characteristics of all the structures R_3T , R_5T_2 and R_7T_3 can be summarized as follows:

(1) All R atoms participate in the formation of regular trigonal prisms.

(2) All T atoms are at the centres of regular trigonal prisms.

References

- ANDERSSON, S. & HYDE, B. G. (1974). J. Solid State Chem. 9, 92–101.
- BUSCHOW, K. H. J. & VAN DER GOOT, A. S. (1968). J. Less-Common Met. 14, 323-328.
- BUSCHOW, K. H. J. & VAN DER GOOT, A. S. (1969). J. Less-Common Met. 18, 309-311.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A 24, 321–324.
- FLACK, H. D. (1974). Acta Cryst. A30, 569-573.
- FLACK, H. D. (1975). J. Appl. Cryst. 8, 520-521.
- FRUCHART, R. (1963). Bull. Soc. Chim. Fr. 439, 2652-2658.
- IANDELLI, A. & PALENZONA, A. (1974). J. Less-Common Met. 38, 1–7.
- JACK, K. H. & WILD, S. (1966). Nature, Lond. 212, 248-250.
- KISSEL, F., TSUCHIDA, T. & WALLACE, W. E. (1966). J. Chem. Phys. 44, 4651-4652.
- KUO, K. & PERSSON, L. E. (1954). J. Iron Steel Inst. 178, 39-44.
- LARSON, A. C. & CROMER, D. T. (1962). Acta Cryst. 15, 1224–1227.
- LEMAIRE, R. & PACCARD, D. (1967). Bull. Soc. Fr. Minér. Crist. 90, 311-315.
- LIPSON, H. & PETCH, N. J. (1940). J. Iron Steel Inst. 142, 95–104.
- MOREAU, J. M., PACCARD, D. & PARTHÉ, E. (1976). Acta Cryst. B32, 496–500.
- OLCESE, G. L. (1973). J. Less-Common Met. 33, 71-81.
- RAY, A. E. (1974). Cobalt, 1, 13-20.
- ROOF, R. B., LARSON, A. C. & CROMER, D. T. (1961). Acta Cryst. 14, 1084–1087.
- SENATEUR, J. P. & FRUCHART, R. (1963). C. R. Acad. Sci. Paris, 256, 3114–3117.
- X-RAY system (1972). Version of June. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- YVON, K., JEITSCHKO, W. & PARTHÉ, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns, 1969 Version, Laboratoire de Cristallographie aux Rayons X, Univ. de Genève, Geneva, Switzerland.